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Resonant interactions between internal gravity waves propagating in a stratified shear 
flow are considered for the case when the background density and shear flow vary 
slowly with respect to the waves. In Grimshaw (1988) triad resonances were 
considered, and interaction equations derived for the case when the resonance 
conditions are met only on certain space-time surfaces, being resonance sites. Here this 
analysis is extended to include higher-order resonances, with the aim of studying 
resonant wave interactions near a critical level. It is shown that a secondary resonant 
interaction between two incoming waves, in which two harmonic components of one 
incoming wave interact with a single harmonic component of another incoming wave, 
produces a reflected wave. This result is shown to agree with the study of Brown & 
Stewartson (1980, 1982a, b) who obtained this same result by a different approach. 

1. Introduction 
Resonant wave interactions in fluid flows have been intensively studied over the last 

two decades (see, for instance, Craik 1986). For the most part, attention has focused 
on the case when the resonance conditions are met globally. In this case the interacting 
waves are infinite periodic wavetrains, the interaction equations can be integrated in 
terms of elliptic functions, and the nature of the interaction is well understood. If, 
instead, the interacting waves are wave packets, the interaction equations can 
sometimes be solved by an inverse scattering transform algorithm and many interesting 
solutions have been found. However, situations can arise when the resonance 
conditions can only be met locally on certain space-time surfaces. This has been 
studied in a model context by Grimshaw (1987), and for triad interactions in stratified 
shear flows by Grimshaw (1988, hereafter denoted by (G)). 

In this paper we extend the analysis of (G) to consider higher-order interactions in 
stratified shear flows for the case when the background stratification and shear flow 
vary slowly on length and time scales associated with the waves. Resonant triad 
interactions for internal gravity waves in the absence of any background shear flow 
have been studied by Ball (1964) for a two-layer fluid, and by Thorpe (1966) for 
continuous stratification. When a background shear flow is included, resonant triad 
interactions have been studied in layered fluids by Cairns (1979), Craik & Adam (1979), 
Tsutuhara (1984) and Tsutuhara & Hashimoto (1986), while Becker & Grimshaw 
(1 993) have considered the case of continuous background stratified shear flows. 
However, in all these studies the resonance conditions are met globally, whereas in (G) 
the resonance conditions are only met locally on certain resonance sites, being 
space-time surfaces. 

Our main aim in extending the analysis of (G) to higher-order resonances is to be 
able to study resonant wave interactions near a critical level. In a series of papers, 
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Brown & Stewartson (1980, 1982a, b, hereafter denoted as (BS)) studied the nonlinear 
processes affecting internal gravity waves propagating towards a critical level. They 
showed that wave reflection and transmission were determined by a sequence of 
resonant wave interactions in which the higher harmonics of the main incoming wave 
played a crucial role in the interaction process. (BS) showed that the main incoming 
wave, denoted as a steady wave being the wave which defines the critical level, and 
another incoming wave, denoted as critical layer noise being a wave transient 
associated with the generation of the main wave, interact near the critical level to 
produce first a reflected wave, and then at a higher order, a transmitted wave. The 
analysis of (G), although confined to triad resonant interactions, was able to mimic this 
process by allowing the steady wave and the critical-layer noise to have different 
harmonic components. But to reproduce the (BS) scenario exactly it is necessary to 
allow the steady wave and the critical-layer noise to have the same harmonic 
components, and this in turn makes it necessary to extend the analysis of (G) to include 
higher-order resonances. This we do here by considering both primary and secondary 
resonant triads. 

In $2 we describe a modulated wave packet propagating in a stratified shear flow. As 
well as describing the modulation of the amplitude of the primary harmonic, we also 
include a calculation of the second harmonic and mean flow components. In contrast 
to (G) which used a Lagrangian coordinate system, we here use an Eulerian co- 
ordinate system to facilitate comparison with (BS). Then in $ 3  we derive the interaction 
equations for a primary resonant triad, reproducing the result of (G), and also for 
secondary resonant triads, in which either a second harmonic of one wave interacts 
with the primary harmonic of two other waves (a second harmonic interaction), or a 
bound harmonic produced by the interaction of two primary harmonics interacts with 
one of these primary harmonics and a third wave (a bound harmonic interaction). In 
$4 we apply this general theory to study wave interactions near a critical level. For this 
purpose, we consider only two-dimensional flow configurations, assume that the 
background shear is linear and that the density stratification is uniform. For simplicity 
we also make a hydrostatic approximation here. Although the main purpose of these 
specializations is to facilitate a direct comparison with (BS), we emphasize that many 
analytical and numerical studies of critical layers have been carried out for this same 
special case. As in (BS) we consider two incoming waves, a steady wave and critical- 
layer noise, and then consider the possible primary and secondary resonant 
interactions. We show that there are no primary resonant triads, but a secondary 
resonance occurs which produces a reflected wave. The reflection coefficient of this 
wave is calculated and found to agree exactly with the result of (BS). This demonstrates 
that the nonlinear analysis of (BS) can be interpreted as resonant wave interactions in 
the sense of this paper. 

2. Modulated waves 
Let the basic flow consist of the shear flow un(z) = (un(z), u,(z), 0) and the density field 

p&). Throughout we shall use non-dimensional variables based on a lengthscale h, (a 
typical wavelength), a timescale N;' (where Nl is a typical value of the Brunt-Vaisala 
frequency) and a pressure scale p lgh ,  (where p, is a typical value of the density). The 
non-dimensional Brunt-Vaisala frequency is N(z), where 
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Here P = h, N,2g-l is the Boussinesq parameter. We shall assume that the fluid is non- 
diffusive and incompressible, so that the density p is given for all time by 

P = Po@ - $ 3  (2.2) 

where y is the vertical displacement of a fluid particle from its initial position. Thus 

where 
d a  
- = -+u*.V. 
dt 2t  

(2.3 a) 

(2.3 b) 

Here u is the velocity field relative to the basic flow, and w = u -  k is the vertical velocity 
component. The incompressibility condition is 

v - u  = 0. (2.4) 

P =Po(.> +P% (2.5) 

To complete the equations of motion we introduce a pressure perturbation y by 

where p is the pressure, and p,(z) is the basic pressure field. Then the momentum 
equation is 

Next we assume that the basic flow varies slowly with respect to the length and time 
scales of the wave field. Hence we introduce the slow variables 

X= ex, T =  et, (2.7) 
where e is a small parameter. The basic flow is assumed to be a function of Z = €2, so 
that uo = uo(Z) and po = po(Z). Consequently from (2.2) p = po(Z-s$. Consistent 
with these hypotheses we assume that the Boussinesq parameter p is O(e) and we put 
,8 = ce. Then (2.1) becomes 

It follows that 
p - po(Z) = evpo N25 + ve2N1, 

where Nl = - ~ p o N 2 ) , p 2 + O ( € g 3 ) .  

Further, we now write the momentum equation (2.6) in the form 

(2.8) 

( 2 . 9 ~ )  

(2.9 b) 

(2.104 

Eliminating q and u from the linear parts of (2.3 a), (2.4) and (2.10~) in favour of 5 we 
get 

(2 .114 
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where 

(2. I 1  b) 

and I = u-vg. (2.11C) 

Here the subscripts H and V denote horizontal and vertical components respectively. 
In (2.11 a) A4 contains all the nonlinear terms. 

Now the linear part of (2.1 1 a) is identical with the corresponding linear operator in 
(G). Hence we employ the same methodology although we note that the nonlinear 
terms are different since the present development is in Eulerian coordinates whereas 
that in (G) was based on Lagrangian coordinates. Thus (2.11 a) can be written in the 
form 

(2.12) 

Here L(po ,p ;  2; e) is the linear operator defined by 

L = L,+eL, 

Lo(Po, P; Z )  = Po{@p, + *o *pHI2p2 + N%I, 

(2.1 3 a) 

(2.1 3 b) where 

and (2.13~) 

Here p 3  = pa k is the vertical component of p .  

modulated wave. Thus we put 
In the remainder of this section we seek an asymptotic description of a single 

(2.14a) 

(2.14b) 

g = a(A(X, T )  exp (iB) + * j + ea2g(2) + O(e2a3), 

1 
where 0 = - O(X, T).  

e 

The wave is described by a slowly varying amplitude A and a rapidly varying phase 0.  
The local frequency o and wavenumber K are defined by 

(2.15) 

Note that because an unmodulated wave is an exact solution of the fully nonlinear 
equations (e.g. Grimshaw 1974), we can insert a factor e into the coefficient of the 
perturbation term <(B). In (2.14~~) a is an amplitude parameter, and in the next section 
will be regarded as small. However, for the time being, it can be finite and (2.14~) is 
essentially an expansion in e. Clearly [(') will consist of a second harmonic term and 
a mean term, and so we anticipate that we may eventually put 

Cf2) = {A@) exp (2i0) + * j + A(o) .  (2.16) 

Our main purpose here is the calculation of the second harmonic term A('), although 
for completeness we shall also calculate the mean term A(").  However, this latter 
calculation requires a different procedure from that for the second harmonic, and 
hence is deferred until the end of this section. 
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As a preliminary to finding {(') we define the dispersion operator 

D(w, K ;  2)  = Lo( - iw, iK; Z ) ,  (2.17 a) 

so that D p0{6'K2 - N2KL}, (2.17 b) 

where 6 = O - U o ' K H ,  K = 1x1, KH = IKHI. ( 2 . 1 7 ~ )  

Here (2.17b) follows from (2.13b). Substituting ( 2 . 1 4 ~ )  into (2.12) we find that, at 
leading order, 

D(o, K ;  2)  = 0 (2.18) 

and so, as expected, the modulated wave satisfies the local dispersion relation. At the 
next order, we obtain (see (G)) 

w2L0 [(') + €a{iD, A exp (i8) + *) + M @ )  + . . . = 0, (2.19a) 

where (2.19b) 

Here and subsequently V denotes the derivative with respect to X whenever the 
argument implies that this must be the case. In (2.19a) M ( 2 )  is the €a2 term in the 
nonlinear expression M ,  and . . . denotes all higher-order terms. To avoid secularities 
{(') cannot contain any terms whose phase is 8 since Lo is then a null operator. Since 
it will transpire that M(') contains no terms whose phase is 8, it follows that 

D,A = 0. (2.20) 

Thus (2.18) and (2.20) determine the phase and amplitude respectively of the 
modulated wave. Further (2.20) is the wave action equation, and can be put in the form 

DJ 
- + V . ( V J )  D T  = 0, (2.21 a) 

where 

and 

v =  V K 6 ,  (2.21 h) 

~a -- - -+uU,*v. 
DT aT 

(2.21 c) 

(2.21 d )  

Here V is the intrinsic group velocity, and J is the (complex) wave action density (see 
Grimshaw 1984). 

The next task is to calculate First we note that, with [ given by (2.14a), 

u = a?l(-iicjAexp(iB)++}+ ..., (2.22a) 

where (2.22 b) 

Here the omitted terms contain the second-harmonic and mean terms. Note in 
particular that V - K  = 0, and so, to leading order, the velocity field is perpendicular to 
the direction of phase propagation. At this stage, in calculating M(') we will only 



6 R.  Grimshaw 

collect the terms that contribute to the second harmonic A(') in c(') (see (2.16)). The 
calculation of the mean term A(') requires a different procedure, and will be left until 
the end of this section. First we consider I (2.1 I c) and find that to leading order the 
second harmonic terms in I are given by 

F 2 )  = ea2V - (&q) {iA2 exp (2iH) + *}. (2.23) 

Similarly, it can be shown from (2.10b) that to leading order the second-harmonic 
terms in M are given by 

M @ )  = e a Z { ~ z [ q ( V ~ q ) - ( q ~ V ) ~ ] - ~ ( p , N 2 ) z k + ~ p o N 2 ~ 2 q ) { A a e x p ( 2 i B ) +  *). 
(2.24) 

Hence, from (2.11 b) we find that the leading-order second-harmonic terms in M are 
given by 

M(')  = s a 2 P ( A 2  exp (2i8) + *), (2.25 a) 

PC2) = - 2 ~ & ( p ,  N2),-6po N 2 ~ 2 q . V  (5)- 12po N ' K ~ V . ~ .  (2.25 b) where 

Then, from (2.16) and (2.19a) we find that, to leading order, 

D(20, 21c; Z )  A@)  + P A 2  = 0. 

Further, from (2.17 b)  and (2.18), 

0(20,2K; z) = 12p0 NaK$. 

(2.26) 

(2.27) 

In particular, D(20,21c; z) cannot be zero here and hence there are no second-harmonic 
resonances. Thus from (2.26) we have 

3 (2 .28~)  A(% = y(2)A2 

where 

or 

(2.28 b) 

(2.28 c) 

To complete the calculation of the first and second harmonics we must return to 
(2.3a), (2.4) and (2.104, and calculate the counterpart of ( 2 . 1 4 ~ )  for the velocity field 
u and the pressure q. Only the former will be needed in what follows and we put 

u = a{&) exp (i8) + c.c.} + ea2{d2) exp (2i8) + c.c.) + a2do)  + . . . . (2.29) 

Here the first harmonic u(l) is given to leading order by (2.22a), while the mean term 
do) will be calculated below. The second-harmonic term is given by, to leading order, 

u(2)  = 1&42( ' -p'2'q+ d 2 ) K  x k), (2.30 a)  

where 

and 

(2.30b) 

(2.30 c) 

The mean flow component is best calculated by averaging the equations of motion 
with respect to the phase 8. The technique is well established, and for the present 



Resonant wave interactions near a critical level 7 

problem the results have been previously obtained by Grimshaw (1974). Hence we shall 
only give a brief outline here. First we define the averaging operator 

(...) = - (...)do. J: (2.31) 

It follows that ( u )  = a2u("), etc. Then we apply the averaging operator to (2.3a), (2.4) 
and (2.1Oa). We find that the average of the nonlinear terms M (2.10 b) and I(2.11 c) 
are given by, to leading order, 

( M )  = €a'{(v.(vK,J)-kkV* v- -k(poN2)ZIA12}+. . . ,  ( 2 . 3 2 ~ )  ( Kiq 
and ( I )  = €2a2V J(O) + . . . , (2.32b) 

where 

(2.32 c) 
Hence the equations for the mean flow are 

+ V - ( V K , J ) - ~  +(poN'),lA12} = 0 ,  (2.33a) 

v.  u(0) = 0, (2.33b) 

and (2.33 c)  

Note in particular that the mean vertical velocity a'w'') is O(e2a2) and can usually be 
ignored. Also, the radiation stress forcing term in ( 2 . 3 3 ~ )  can be rewritten with the aid 
of the wave action equation (2.21 a) as follows: 

In what follows we are concerned only with the case when the wave packet varies 
only with respect to 2 and T, and we can consequently assume that the mean flow also 
depends only on 2 and T. In this situation it follows from (2.33b) that w(O) is zero, and 
then (2.33 c) shows that 

Using (2.34), the horizontal component of the mean momentum equation (2.33a) 
shows that 

poug) = JK H' (2.36) 

Finally, the vertical component of the mean momentum equation (2.33 a) determines 
the mean pressure q ( O ) .  
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3. Resonant interactions 

two modulated waves to produce further modulated waves. Thus we put 
We now seek an asymptotic solution of (2.11 a) which describes the interaction of 

1 N 

{ =  c{r+Sc{s+82{(1)+.... 
r=o ,=2 

(3 .1)  

Here each of lo, Cl is a single modulated wave, described by the analysis of the previous 
section, where now the wave variables are indexed by r = 0, l .  Thus, from (2.14a, b) 
and (2.16), 

c, = a,{A,exp (iH,) + *} + eaF{Ay) exp (2i6,) + *}+€a: A$) + O(e2a:). (3.2) 

Here w,, K, satisfy the local dispersion relation (2.18), A,  satisfies the wave action 
equation (2.21 a), A?) satisfies (2.28a), and A?) is determined from (2.35). 
Independently, for each r = 0 , l  they are asymptotically solutions of (2.1 1 a). However, 
their nonlinear interactions generate further modulated waves, which are described by 
the set Q, s = 2,. . . , N .  The parameter S is a generic ordering parameter. Then we put 

lS = A,exp(iH,)+* for s = 2, ..., N (3.3) 

and at leading order it is readily seen that the local dispersion relation (2.18) is satisfied 
for each s = 2, . . . , N so that 

At the next order we get (see (G) and (2.19a)), 

D(os, K,; z) = 0. (3.4) 

IV 

&'Lo {(l) + t& C {iD, A,  exp (ie,) + *} + W') = 0. (3.5) 

Here D, A,  is defined by (2.19 b), and M ( l )  contains the leading-order nonlinear terms 
generated by the interaction of c0 and 5,. There are also, of course, nonlinear terms 
generated by the interaction of <,, r = 0, l  with Cs, s = 2,. . . , N ,  or by interactions 
amongst the set Q, but these are assumed here to be of higher order, and hence we will 
not need to consider them. To avoid secularities it is clear that {(l) cannot contain any 
terms whose phase is 6, (or indeed B0, 8,) since Lo is then a null operator (see 2.13b) and 
( 2 . 1 7 ~ ) ) .  It follows that 

(3-6) 

where [. . .] indicates that this nonlinear term contributes only when a resonance occurs 
so that the phase of is 8,. In the absence of such resonances, we see that 
D, A ,  = 0, or A,  satisfies the wave action equation (see (2.21 a d ) ) ,  

s-2 

idD, A ,  + [M") exp (- iH,)] = 0, 

(3 .74  D J, 
-+V-( DT V, J,) = 0, 

where v, = V , j , ,  (3.7b) 

It remains to identify the leading-order resonances, and to determine the form of (3.6) 
when a resonance occurs. Here we identify three possibilities. The first occurs when the 
modes r = 0 , l  and s = 2, say, interact to form a resonant triad. This was the case 
discussed by (G) but we summarize the results here for convenience. The second occurs 
when the second harmonic of the mode r = 0 interacts with the first harmonic of the 

and J, = 2p0 O, K," A,". (3 .74  



Resonant wave interactions near a critical leuel 9 

mode r = 1 to generate the mode s = 2, say. The third occurs when the first harmonics 
of the modes r = 0 , l  interact to produce a bound component, which then interacts 
with the first harmonic of the mode r = 0 to generate the mode s = 2 say. 

(i) Resonant triad interaction This is the case discussed by (G) although the analysis 
there was in Lagrangian variables. Here we have repeated the analysis in the present 
Eulerian variables, and will summarize the outcome. Let us define 

1 
0, + 0, + 8, = - x ( X  T ) ,  

8 
(3.8a) 

so that o,+o,+w, = -- ax (3.86) 

and KO + K ,  + K ,  = vx. ( 3 . 8 ~ )  

Then a resonance occurs at those locations where 8x/c?T and Vx vanish simultaneously. 
Here we are supposing that the modes Y = 0 and 1 are interacting to produce mode 2, 
and hence we evaluate the term [...I in (3.6) for s = 2. Omitting details we find that 

2 T' 

where 

[M") exp (- i0,)] = - ia, a, po N,K;, ?A: AT exp (- ix/e), 

m2 
K2 

y = 7 ( q o ' K 2 )  (q, 'KJ + . . . + . . . 

(3.9a) 

(3.9b) 

Here the omitted terms in (3.9 b)  are obtained by a cyclic interchange of the indices 0, 
1,2 and we recall that q and m are defined by (2.22b). Substitution of ( 3 . 9 ~ )  into (3.6) 
then gives the required equation for A,.  Note that (3 .94 b)  corrects a minor misprint 
in (2.21 a-c) in (G). 

The amplitude equation is thus (3.6) with the nonlinear term given by ( 3 . 9 ~ )  and D ,  
defined by (2.19h). In what follows we do not need the full form of this equation, and 
it will be sufficient for us to treat it as an equation describing how the waves r = 0,1 
interact to produce the wave ,F = 2 near a resonance site, defined by (3.10) below. To 
simplify the form of (3.6) near a resonance, we follow (G) and assume that the 
resonance conditions 

o,+w,+w, = 0, K , + K l + l c ,  = 0 (3.10) 

define a resonance surface R(X, T )  = 0. On the resonance surface x is a constant which 
we shall set to zero. Since xT and Vx vanish on R = 0, it follows that near R = 0 we 
may assume that x K R2. Hence we rescale and put 

R = A, x z &5'r2, (3.11) 

where r is a coordinate transverse to the resonance surface. Substituting these variables 
into (3.6), where we recall that D, is defined by (2.19b), and using (2.17b) and ( 3 . 9 ~ )  
we get 

where 

(3.12a) 

(3.12b) 

Here p2 and y are evaluated on the resonance surface R = 0. Equation (3.12a) now 
implies that the amplitude parameter S = a. czl 8-a for this interaction, where we require 
that 8 <  1. 
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In general, there are two similar equations for A ,  and A ,  obtained by a cyclic 
interchange of the indices in (3.12a), and the three equations together define an 
exchange of energy between the three modes during the interaction. Here, however, we 
are taking the point of view that A ,  and A,  are already specified, and (3.12~) describes 
the generation of A,.  Strictly, there are changes in the amplitudes of Ap and A,  during 
the resonant interaction, but these have magnitudes a, S/da, and a, S/@a, respectively, 
and with 6 = aoal e-a for this interaction, can be ignored if a: 4 6 and a: 4 6 

respectively. Hence, in (3.12a) we suppose that A ,  and A,  are constant (i.e. independent 
of the local variable 7), and so the solution is 

(3.13) 

Here, we are assuming that A ,  -+ 0 as 7 -+ - co which will be the case if the sense of 7 

increasing is chosen to be consistent with causality. Then, as 7 + 00 corresponding to 
the generation of A,, we get from (3.13), 

(3.14) 

This is the amplitude of A ,  generated by the interaction of A,  and A,,. and is the main 
result of this subsection. Away from the resonance site, the amplitude is determined by 
(3.74 (with s = 2), and (3.14) is effectively an initial condition for this equation. 

(ii) Second harmonic interaction The description of this interaction is one of the two 
main purposes of this paper. We suppose that the second harmonic of the mode 
Y = 0 interacts with the first harmonic of the mode r = 1 to generate the mode s = 2. 
Hence we define 

(3.15 a) 
1 

24, + dl + 0, = - i(x, T I ,  
8 

2w,+w,+w, = -- a i  (3.15b) so that 

and 2Ko + K, + K, = vi .  (3.1 5 c)  

Then a resonance occurs at those locations where ai/aTand Vi vanish simultaneously. 

i3T’ 

Here we are supposing that the modes r = 0 and 1 are interacting to produce 
and hence we evaluate the term [...I in (3.6) for s = 2 to get 

exp (- iO,)] = - isa: a, p, N 2 ~ & ,  AT exp (- iX/s), 

and 

mode 2 

(3.16a) 

(3.16 b) 

(3.16 c) 

(3.16d) 

(3.16e) 

(3.16f) 
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and we recall that d2) is defined by (2.30 c). Here the coefficients v r )  and lib") in (3.16 b)  
are given by (3.16c, d )  evaluated for the mode r = 0. The coefficients are, 
of course, determined from v(') ( 2 . 2 8 ~ )  and u@) ( 2 . 3 0 ~ ) ~  but the derivation is very 
lengthy and we shall omit the details. Note that y(2) is symmetric with respect to the 
indices 1 and 2. Substitution of ( 3 . 1 6 ~ ~ )  into (3.6) now gives the required equation for 

As in case (i) above the amplitude equation (3.6) is regarded as an equation 
describing how the waves r = 0 , l  interact to produce the wave s = 2 near a resonance 
site, now defined by (3.17) below. To simplify the form of (3.6) near a resonance, we 
follow the same procedure as for case (i) and assume that the resonance conditions 

2w,+w,+w, = 0,  2U,+K1+lC;, = 0 (3.17) 

define a resonance surface k ( X ,  T )  = 0. On this resonance surface R is a constant which 
we shall set to zero. Since iT and Vi vanish on R = 0, we assume that i oc R2, and so 

(3.18) 
rescale so that 

Substituting these variables into (3.6) we now get 

and 

A,. 

- 1  R = @7, R z &%'. 

where 

( 3 . 1 9 ~ )  

(3.19b) 

Here 1, and y@) are defined on the resonance surface l? = 0. Equation ( 3 . 1 9 ~ ~ )  now 
implies that the amplitude parameter 6 = a: a1 .& for this interaction. 

There is a similar equation for A ,  obtained by an interchange of the indices 1 and 
2 in (3.19a), and the two equations together define an exchange of energy between these 
two modes. Here, however, as in case (i) we are taking the point of view that A, and 
A ,  are already specified, and so (3.19a) determines the generation of A,. Strictly there 
are changes in the amplitudes of A,  and A, during the interaction, but these have 
magnitudes a, S/& and &+a," S/a, respectively, and with 6 = a: a1 d for this interaction, 
can be ignored if a. a, < 1 and eat < 1 .  Hence, in (3.19a) we can suppose that A,  and 
A ,  are constant, and so the solution is 

(3.20) 

where we are assuming that A, + 0 as 7 + - a. Then, as 7 + co we obtain the following 
expression for the generation of A,  : 

(3.21) 

This is the amplitude of A ,  generated by the interaction of the second harmonic of the 
mode r = 0 with the first harmonic of the mode r = 1, and is the main result of this 
subsection. Away from this resonance site, as in case (i), the amplitude is determined 
by ( 3 . 7 ~ )  (with s = 2), and (3.21) is effectively an initial condition for this equation. 

(iii) Bound harmonic interaction The description of this interaction is the second 
main purpose of this paper. We observe that the first harmonics of the modes r = 0 , l  
can interact to produce a bound component with phase (O,+B,), where we are 
assuming here that there are no triad resonances in the vicinity. Then this bound 
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component interacts with the first harmonic of the mode r = 0 to generate the mode 
s = 2. The resonance conditions are the same as those for case (ii) and hence given by 
(3.17). 

To calculate the amplitude A ,  for this interaction we must first modify the expansion 
(3.1) to include the interaction which produces the bound harmonic. Thus we replace 
(3.1) with 

<=  c <r++ol+sC { s + s 2 p + . . . .  (3.22) 
1 A' 

I=, 8=2 

Here the bound harmonic is denoted by COl and given by 

go, = a, a,{iv(')A, A ,  exp (i[#, + 84) + *). (3.23) 

The coefficient do) is calculated in a similar way to that for the second-harmonic 
coefficient dZ) (2.17), or indeed to that for the coefficient y (3.9b) in the triad 
interaction. Thus we obtain 

D(wo +fill, KO + K ,  ; 2)  go, + A4(1°' = 0, (3.24) 

where M(lof is the leading-order term in the nonlinear term M arising from the direct 
interaction of the first harmonics. Note that since we are assuming here that there are 
no triad resonances, we can assume that D(oo + wl, K ,  + K ,  ; 2)  is not zero. Then (3.24) 
provides the means for calculating do).  We omit details and find that 

y ( 0 )  

Po 
D(w ,+w, ,K ,+Kl ;  2)- = - ~ K o + K , ~ " ( 3 ~ ( ~ , ~ K l ) + G : ( ~ l ~ K , ) }  

- 2 ~ o ~ , ( ~ , + ~ , ) ( ~ o ~ ~ 1 )  (%-KO). (3.25) 

Next we assume that <,,, interacts resonantly with c0 to generate the mode 12. As in case 
(ii) we define i by (3.14~-c) and then resonance occurs at those locations where ?i/aT 
and Vi vanish simultaneously, or where the resonance conditions (3.17) hold. The 
remaining analysis is similar in form to that described in case (ii). We let (3.17) define 
a resonance surface k ( X ,  T )  = 0, then introduce T by (3.18) and finally obtain from 
(3.6) the amplitude equation 

1 ,. aA2 
a7 

e3Pz ~ = a: a ,  y(o)A,*2 A: exp ( -+i$T2), (3.26 a) 

where 

(3.26d) 

Note that unlike its counterpart y(') in (3.19~) the coefficient y(O) is not symmetric in 
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the indices 1 and 2 owing to the different roles played by the modes 1 and 2 in this 
interaction. Equation (3.26a) implies that the amplitude parameter 8 = af a1 6-4 for this 
interaction, and hence we require that a: a1 4 .&. Significantly the amplitude parameter 
for this bound interaction is larger by a factor than the corresponding amplitude 
parameter for the second-harmonic interaction. 

The remaining analysis is similar to that following (3.19 a)  for the second harmonic 
interaction. We assume that A,  and A ,  remain constant during the interaction which 
requires that aOal 4 e and that at 4 1. Then the solution of ( 3 . 2 6 ~ )  is 

f0 )  

P a  
A ,  = - -At2 AT exp (-$i,%”) d7’, (3.27) 

where we are again assuming that A ,  + 0 as 7 + - m. Then as 7 -> cc we get 

(3.28) 

which is the amplitude of A ,  generated by this bound interaction. Away from the 
resonance site the amplitude is determined by (3.7a) (with s = 2), and (3.28) is 
effectively an initial condition for this equation. 

4. Wave interactions near a critical level 
The analysis of the previous section has identified a scenario in which wave triads 

interact in the vicinity of certain resonance surfaces. We envisage a sequence of such 
interactions in each of which a pair of waves interacts to produce a third wave, 
determined either by (3.10) for a primary resonant triad, or by (3.17) for a secondary 
resonant triad. During each such interaction the amplitude of the third wave produced 
is given by (3.14), (3.21) or (3.28) respectively. Outside the resonance surfaces the 
amplitude of each wave is determined by the appropriate wave action equation 
(3.7a-c). To illustrate this process we choose the particular example of waves 
approaching a critical level. This choice is motivated by the series of papers by Brown 
& Stewartson (BS) on the nonlinear processes affecting internal gravity waves near a 
critical level. They showed that wave reflection and transmission were determined by 
a hierarchy of wave interactions. Importantly for the present work they showed that 
the second harmonic of the main incoming wave plays a major role in initiating this 
process. In (G) we modelled this process using only primary resonant triad interactions 
(i.e. satisfying (3.10)). Here we follow the work of (BS) more closely, and imitate the 
process with a secondary resonant triad. Further, here we shall also keep track of the 
wave amplitudes. 

4.1. Wave classlJication 
To model a critical level, placed at 2 = 0, we choose the Brunt-Vaisala frequency iV 
to be constant, and put I(, = (Z,  0,O). The small parameter E is a measure of Rid where 
Ri is the Richardson number of the basic flow at the critical level. We assume that icH 

(the horizontal component of K) is constant and parallel to u,, and to simplify the 
analysis we also assume that m2 % K;, where ni is the vertical wavenumber component. 
This is an appropriate assumption for waves near a critical level. Then the dispersion 
relation (2.18) has the approximate solutions 
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where K = ( k ,  0, m) and we recall that K~ = Ikl is a constant. The alternate signs refer 
to waves whose vertical group velocity is positive (negative). Equation (4.1) is a partial 
differential equation for the phase 0, where we recall from (2.15) that w = - 0, and 
m = 0,. It is sufficient for our purposes to generate the following family of solutions 
of (4.1). We put k = nK where n is an integer, K > 0 and let 

where 

0 = sNlnT+kX+NfTq)+E, 

7 = K Z T / N ,  

s is an integer, and E is a disposable constant. Hence 

1v 
w = -T(s+q,f‘(7)), rn = KTf’(r/). 

(4.2a) 

(4.2 b) 

(4.3) 

Substituting these expressions into (4.1) we get 

9 f 2  + (n7 +s).f’ T In1 = 0. (4 * 4) 

The particular choice (4.2a, b) is motivated by the analysis of (BS) who found waves 
of this form in their study of nonlinear interactions near a critical level. (G) gives a 
comprehensive discussion of the solutions of (4.4), but for convenience we shall 
summarize that here. For each integer pair (n,s) there are two solutions of (4.3) with 
positive group velocity and two solutions with negative group velocity. We shall denote 
each solution as {n, s, i, & 1 where i = 1,2 refers to the two solution branche of (4.3) and 
f refers to positive (negative) group velocity. 

The trajectory of each wave is found by integrating the equation 

where W is the vertical group velocity. Away from resonances the amplitudes are 
determined from the wave action equation (2.21 a) which reduces here to 

JT + (WJ),  = 0, (4.6a) 

with J = constant x mA2. (4.6b) 

It will be shown below that the resonance surfaces are level surfaces of 7, and hence 
we may put R , k  = (y+constant). It then follows from (3.12b) and (3.19b) that 

First, consider the solutions { n ,  signn, i, -1 which are given by 

f’ = -(signn)v-l, -n  (4.8) 

for i = 1,2 respectively. The corresponding frequency and vertical wavenumber 
components are 

(4.9a) 
N 

w = 0,k.Z-(signn)- 
T’ 

and N 
2 

m = -(signn)-, -kT (4.9b) 

The first of these, i = 1, corresponds to a steady wave propagating downwards, and is 
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just the steady wave analysed by Booker & Bretherton (1967), and found by them to 
undergo critical-layer absorption in the linear theory. Its trajectory is given by 

-- - (In1 T+constant)-l. (4.10) KZ 
N 

Thus, in Z+O it represents a wave propagating towards the critical level at 2 = 0 as 
T+ co, while in 2 < 0 it represents a wave propagating away from the critical level 
with Z-t-  co in finite time. If it is assumed that the wave is generated far above 
the critical level, then its wavefront is given by In17 = 1, and it occupies the region 
In1 7 3 1. The second solution, i = 2, in (4.8) corresponds to critical-layer noise in the 
terminology of (BS) and is a transient associated with the start-up process. Its 
trajectory is 

KZ 1 
N 

- Inl T+ constant. (4.1 1) 

Thus it represents a wave which propagates down to some finite level of Z as T +  00. 
Away from resonances the amplitudes are found from the wave action equation (4.6a). 
For the boundary condition used by (BS) at the level where the waves are generated, 
the amplitudes are proportional to 2 - 3  and Tt (In1 7 - 1)-’ for i = 1,2 respectively. The 
steady wave (i = 1) becomes infinite at the critical level. The critical layer noise (i = 2) 
is singular at In17 = 1, but this is a consequence of the asymptotic approximations 
inherent in modulated wave theory, and the singularity is replaced by a boungary-layer 
structure in the full-wave theory of (BS 1982a). Finally the coefficients p2, p, (4.6) are 
given by 

(4.12) 
2 

Pz,P2 = *K( Inl7-  11, 

for i = 1,2 respectively. 
Next, consider the solutions {n, -sign n, i, + j which are given by 

f’ = (sign n) ~ - l ,  - n (4.13) 

for i = 1,2 respectively. These solutions are analogous to those just discussed except 
that the group velocity is now positive. The first solution (i = 1) corresponds to a 
steady wave propagating upwards towards the critical level at 2 = 0 if 2 < 0, or away 
from the critical level in Z > 0. The second solution (i = 2) corresponds to upward- 
propagating critical-layer noise. 

Now we turn to the general case and seek solutions {n, s, i, + j with positive group 
velocity. From (4.3) these are given by 

2 r f  = -( n7 +s) f {(nq + s ) ~  + 4qlnl); (4.14) 

for i = 1,2 respectively. For s(signn) < - 1, both branches are defined for all r ,  except 
possibly 7 = 0. For s > 0 the branch i = 1 is regular at q = O(f’ z! JnI s-’), while the 
branch i = 2 is singular (f’ w -ST-‘); for s < 0 the branch i = 1 is singular 
(f’ z! -ST,-’), while the branch i = 2 is regular cf‘ w In1 s-’). As 7 +  co, f’ - 7-l for 
i =  1 andf’m-n- (s+ 1)y-l for i = 2, when n > 0; if n < 0,f’ N -n- (s- 1) 7-l for 
i = 1 andf‘ - - 7-l for i = 2. Comparing these results with (4.13) we can interpret the 
branch for which f’ - (sign n) 9-l as 7 + co as an upwardly propagating steady wave, 
and the branch for which f’ - -n as an upwardly propagating critical-layer noise. 
Similar considerations apply when 71 + - co. The trajectories are found from (4.5) and 
are given by 

T(f’ + n) = constant. (4.15) 
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Both branches are hyperbolae in the (2, T)-plane and, depending on the sign of the 
constant in (4.15) and sign n, correspond either to a wave that propagates to Z+ cc in 
finite time, or to a finite value of 2 as T+ m. The wave action equation (4.6a) can be 
integrated along each trajectory and we get 

J = constant xf"(f' + n)-'. (4.16) 

Finally the coefficients P,,B2 (4.6) are given by 

(4.17) 

for i = I ,  2 respectively. 
For s(signn) 2 0 both branches are defined only in y 2 7, and q < q2 where 

1121 ql ,  = - ( 2  + s(sign n)} 2{1+ s(sign .)I+. (4.18) 

The two branches are equal at the turning points y1,2 and we can regard the two 
branches as forming a single wave, one defined for y 2 7, and the other for 7 < 7'. 
Note that y p  < q, < 0 and 7, = 0 only if s = 0. The behaviour as 7 + O  or 7 + &  00 is 
the samc as that described in the previous paragraph. The wave trajectories are again 
given by (4.15), and we note that since { ( q  + s ) ~  + 4yltzl}$ vanishes at the turning points 
yl, these mark a transition between branches. The trajectories are again hyperbolae 
in the (Z ,  T)-plane, and correspond either to a wave propagating to 2 +- 00 in finite 
time, possibly passing through a turning point, or to a wave that propagates to a finite 
value of Z as T+ m again possibly passing through a turning point. The wave action 
is again given by (4.16) with P,,& given by (4.17). 

For the solutions {n, s, i, - 1 with negative group velocity, we find that 

2?f' = - (n9 + s) f {(nv + s)' - 4ylnl)t. (4.19) 

This can be analysed in a similar way to (4.14). We shall not give details except to 
observe that the transformation rl +-q,n + n , s  +-s and an exchange of branches 
takes (4.19) into (4.14). 

4.2. Resonant interactions 
With these preliminaries we now turn to an examination of wave interactions. Primary 
resonant triads (3.10) were discussed in detail in (G), and secondary resonant triads 
(3.17) can be discussed in a similar way. First let us note that for a primary resonant 
triad given by the waves (nj, sj, i, a}  f o r j  = 0,1,2 the resonance conditions (3.10) imply 
that 

n,+n,+n, = 0, s0+s,+s, = 0, (4.20a) 

and (4.20b) 

where of course each& corresponds to the wave inj,+, i, +}. Using (4.14) and (4.20a) 
it can be shown that (4.20b) reduces to 

2 

(4.21) 

For a given pair of wavesj = 0, l  equations ( 4 . 2 0 ~ ~ )  determine n2,s2 and then (4.20b) 
or (4.21) determines the values of 7 where a resonance can occur. It can be shown that 
(4.21) can be reduced to a quadratic equation in 7, and when this has real solutions 
there arc two possible resonance sites, 
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Next, for a secondary resonant triad, the resonance conditions (3.17) imply that 

17 

2n,+n1+rz, = 0, 2s,+s1+s, = 0 (4 .22~)  

and 2f0 +fi +f, = 0. (4.22b) 

Using (4.14) and (4.22~)  it can be shown that (4.22b) reduces to 
2 

k 2{(n, 7 +s,)' f 4qln01}i+ f {(n, 7 + s,)' f 47lnjl}; = 0. (4.23) 

As for (4.21) this can be reduced to a quadratic equation. Like the primary resonant 
triad, for a given pair of waves j = 0, l  equations (4.22~)  determine n2, s, and then 
(4.22b) or (4.23) determines the values of 7 where a resonance can occur. 

Here, we shall not explore the implications of the resonance conditions (4.20a, b) 
and (4.22a, b) in the general case. Instead we shall examine the sequence of interactions 
generated initially by the interaction of a steady wave and critical-layer noise, both 
approaching the critical level from above. Our purpose here is to model the scenario 
described by (BS) for the transient behaviour near a critical level. Tmportantly, both the 
incoming steady wave and the incoming critical-layer noise are generated by the same 
harmonic source, and hence we must put lnOl = InlI where the two waves are denoted 
by j = 0 , l  respectively. Hence we describe the incoming steady wave by {l, 1,1, -} 
withfi = - v-l, and the incoming critical-layer noise by { - 1, - 1,2, - }  withf; = 1 (see 
4.8), i.e. n, = 1, so = 1 and n1 = - 1, s1 = - 1. The respective amplitudes are given by 
(see the discussion following (4.1 1)) 

j=1 

Ti 
A ,  = c, 7 H(q - l), A ,  = c, Ti(7 - 1)-1, 

7= 
(4.24) 

where C,, C, are constants, and we recall that 7 is given by (4.2b) so that (T/y)k is 
proportional to z-;. 

It is readily shown that no primary resonant triads are possible. Note that the 
incoming critical-layer noise could also be described by its complex conjugate 
{1,1,2, - }  with f' - - 1 and n,  = l,sl = 1. But it can again be shown that no 
primary resonant tnads are possible in g > 0, which is where the incoming waves are 
specified. However, a secondary resonant triad is possible with n, = - 1 and s, =.- 1, 
corresponding to the wave { -  1, - 1, i, -t}. If t h e j  = 2 wave is { -  I ,  - l ,i ,  - }  with a 
negative group velocity, thenf; = 7-l for i = 1 andf;' = 1 for i = 2 (see (4.8)). But these 
are just the incoming steady wave and critical-layer noise respectively, and the only 
possible resonance at 7 = 1 is degenerale. Hence we must consider the j = 2 wave to 
be { - 1, - 1, i, +} with a positive group velocity, where 

2& =7+1f{q2+67+1}~.  (4.25) 
Both branches are defined in 7 > 0 (in fact for 7 > - 3 + ~ ' 8 ) .  For the branch i = 1, 
fi - 1 + 27-1 as v+ 03, while for i = 2,fi - - 7-l as 7+ 03, corresponding respectively 
to critical-layer noise or a steady wave as 7 + co. The possible resonance sites are 
found from (4.22h) or (4.23) and are given by y = i(3 f 4 5 ) .  Only g = i(3 + q 5 )  lies 
in 7 > 1 and is relevant since the incoming steady wave is only defined in 7 > 1. Further 
this resonance exists only for the branch i = 2. To summarize, the incoming steady 
wave and critical-layer noise undergo a secondary resonance at = y, = i(3 + ~ ' 5 )  to 
produce the wave { - 1 ,  - 1,2, +} which propagates upwards away from the critical 
levcl, and as 7 + cc has the appearance of an upwardly propagating steady wave. This 
agrees with the results of (BS) who interpreted this as a mechanism for wave reflection 
from the critical level. 

1: 
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To this point there is no distinction between whether this secondary resonant triad 
is a second harmonic interaction (case (ii) in Q 3), or a bound harmonic interaction (case 
(iii) in Q 3). However, this distinction emerges when we calculate the amplitude A ,  at the 
resonance site, which is given by (3.21) for case (ii) or (3.28) in case (iii). Let us first 
consider (ii), the second harmonic interaction. Here we use (3.16b) to find f 2 ) ,  (4.17) 
for b2, (4.24) for A ,  and A, ,  while is given by 

ŝ  = N(2f6’ +f; +X),=,,. (4.26) 

This last expression is a consequence of (3.18) where we put k = (7-7,) and use 
(3.15a) for i. We find that s = 2?/5N/3v:  where v, = i(1 + 2/59 and 7, = vi. Next we 
calculate p 2  from (4.17) and get /I2 = 6w,/N. It remains to calculate y(’) from (3.16b). 
This is a lengthy calculation whose details we omit. With A ,  and A ,  given by (4.24) we 
can now deduce from (3.21) that, at the resonance site 7 = T,, the amplitude Ayi) for 
this case (ii) is 

( i i )  K2Ti (37~); (14-9v,) exp(-f). 
A2 (7 = 7,) = - C,*’ C:- - 

4N: 5t P 
(4.27) 

Finally, we use the wave action equation (4.6a) with solution (4.16) to determine the 
amplitude A?) for values of 7 away from the resonance site 7 = 7,. The result is 

wherefi(7) is defined by (4.25) with the - sign. Finally as y +  co we obtain 

where 

(4.28) 

(4.29a) 

(4.29 b) 

Comparing (4.29a) with (4.24) for the incident wave amplitude A,, we see that R(”) can 
be interpreted as a reflection coefficient due to this resonance mechanism. This 
definition is essentially the same as that used by (BS) and although they did not 
calculate the equivalent of R(”) explicitly, the fact that R(ii) is proportional to T 3  is 
consistent with their analysis. 

Next consider case (iii), the bound harmonic interaction. The calculation is similar to 
that for case (ii) described above, but now A ,  at the resonance site is given by 
(3.28). Here we use (3.26b) to calculate y(O) while b2, A,, A ,  and s^ are given by the 
same expressions as for case (ii). After a lengthy calculation we find that, at the 
resonance site 7 = q,, the amplitude A y )  for this case (iii) is 

(4.30) 

Again we use the wave action equation (4.6a) with solution (4.16) to determine the 
amplitude Api)  for values of 7 away from the resonance site 7 = 7,. The result is the 
same as (4.28) with the index (iii) now replacing (ii). Finally as 7 + 0  we obtain 
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where (4.3 1) 

Remarkably, this expression for agrees exactly with the corresponding reflection 
coefficient calculated by (BS). The calculation of R(il) and R('") are the main results of 
this paper. But in comparing the respective magnitudes it must be recalled that for the 
second harmonic interaction (ii) the amplitude parameter 6 = a: CL, & whereas for the 
bound harmonic interaction (ii) S = a: a, c-f and hence the reflected wave for the 
bound interaction is larger by a factor of c-' than for the reflected wave for the second- 
harmonic interaction. 

Next we consider the case when the incoming steady wave is again described by 
(1,1,1, - }  but the incoming critical-layer noise is described by its complex conjugate 
{ 1,1,2, - 1. For a secondary resonant triad to be possible we now have n, = - 3 and 
s3 = -3. But it can be shown that no resonances are possible in y > 0, and since the 
incoming steady wave is only defined in y > 1, we see that this need not be discussed 
further. 

Another possibility is to interchange the roles of the incoming steady wave and 
incoming critical-layer noise, so tha t j  = 0 is ( - 1, - 1,2, -} withfi = 1 and no = - 1, 
so = - 1 (incoming critical-layer noise), while j = 1 is (1,1,1, - 1 with JI = -7-1 and 
n, = 1, s1 = 1 (incoming steady wave). Of course this makes no difference for primary 
resonant triads for which the system is symmetric with respect to j = 0 , l .  But for a 
secondary resonant triad it is now the critical-layer noise that has the distinguished 
role. A secondary resonant triad is possible with n, = 1, s, =, 1 corresponding to the 
wave (1,1,i, If this j = 2 wave is {1,1,i, -} with negative group velocity then 
f; = - 7-l for i = 1 andfk = - 1 for i = 2, and the system is degenerate. Hence we must 
choose the j = 2 wave to be { 1 ,  1, i, +} with positive group velocity and 

27Ji = - (7+ l ) i { r 2 + 6 7 +  11;. (4.32) 

Note that these are precisely the same wave possibilities considered previously (see 
4.24)). The only possible resonance is again at 7 = 7" = :(3 + 2 / 5 ) ,  and only exists for 
the branch i = 2. As 7+- 03 this branch behaves as critical-layer noise since then 
f; - - 1. To summarize, the incoming critical-layer noise and steady wave undergo 
a secondary resonance at 7 = = i(3 + 1 / 5 )  to produce the wave { 1,1,2, +} which 
propagates upwards away from the critical level and as 7 +- 03 has the appearance of 
upwardly propagating critical-layer noise. It would now be possible to calculate the 
corresponding amplitudes A, for cases (ii) and (iii) in the same manner as described 
above. However, we shall not do this since this resonance does not produce wave 
reflection in the sense defined by (BS). 

(BS) go on to consider higher-order interactions than those described here in $3, and 
in particular calculate the coefficient of the second harmonic of the reflected wave 
which is produced by a resonance between a bound harmonic with phase (28, + 19,) and 
the first harmonic of the mode with phase Oo. They also show that even higher-order 
interactions can produce a transmitted wave, but do not calculate the transmission 
coefficient explicitly. 

Here, however, we have chosen LO confine our attention to the resonances (i), (ii) and 
(iii) described in $3. So far we have considered the resonant interactions between an 
incoming steady wave and incoming critical layer noise and found that a third wave is 
generated at the resonance site 7 = yo = i(3 + ~ ' 5 )  and propagates upwards. But now 
we have the possibility to consider further resonant interactions between either an 
incoming steady wave or incoming critical-layer noise ( j  = 0 or 1) and the newly 
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generated wave ( j  = 1 or 0) with phase function .f(v) given by 2c = 
7 + 1 -{?I* + 6n + 1s; (see 4.25) and (4.42)). Considering both primary and secondary 
resonant triads, and taking into account all possibilities we find that no such further 
resonances are possible in "1 > yo which is where the newly generated wave is defined. 
Hence in the context of this study the calculation of possible resonances generated 
within the critical layer is completed. 

5. Discussion 
In this paper we have developed a general theory for secondary resonant triad wave 

interactions in a stratified shear flow, thus extending the analysis of (G) which 
considered primary resonant triads. The main purpose of this theory was to consider 
the resonant interaction between waves near a critical level, with the aim of showing 
that the study by (BS) of nonlinear processes near a critical level can be interpreted by 
the mechanisms described in this paper. As in (BS) we considered two waves 
approaching a critical level, these being in their terminology a steady wave and critical- 
layer noise. Then we showed that a secondary resonance, defined by (3.17), in which 
two harmonic components of the steady wave interact with a single harmonic 
component of the critical-level noise, produces a reflected wave. This result agrees with 
(BS), and indeed our calculation of the reflection coefficient (4.41) agrees with theirs. 
The (BS) result was obtained for a two-dimensional flow configuration, with linear 
background shear and uniform density stratification, and utilizing the hydrostatic 
approximation. Even so, their analysis involved very complicated and technically 
difficult asymptotic and perturbation methods, which do not reveal easily the 
underlying wave resonance mechanisms. Even though our reanalysis of the transient 
critical layer in $4 uses the same specializations as (BS), we contend that placing the 
analysis in the context of a general theory of wave resonances reveals more clearly the 
central role of wave resonances, and indicates how the transient critical layer might be 
understood in more general circumstances. 

Since here we have not gone beyond a secondary resonance, we are unable to 
reproduce the higher-order calculations of (BS). But it is straightforward to describe 
the possible resonance conditions. Thus letj  = 0 denote the steady wave with phase B,, 
and le t j  = 1 denote the critical-layer noise with phase B,, as in $4. Then an interaction 
between P components of j = 0 and Q components of j = 1 will produce the wave 
j = 2 with phase B,, provided that the following resonance conditions are satisfied: 

Pu,+Qu,+w, = 0 ,  P~c,+QK,+Ic, = 0. (5.1) 

For the phases H given by (4.2a) these imply that 

Pn,+Qn,+n, = 0 ,  Ps,+Qs,+s, = 0,  (5.2a) 

and Pfi + Qfi + fi = 0. (5.2b) 

Further, since here no = 1, n, = - 1, so = 1, s1 = - 1 and fi = -q-I,fi = 1, these reduce 
to 

n, = Q-P,  s, = Q-P,  (5.3a) 

and (5.3b) 
P 

f '= - -Q.  
T 

2 

Thus (5.3a) determines that the wave produced by the resonance is {nz,s2,  i, +} which 
propagates vertically upwards, since with n, = s, as here the analysis of $4 shows that 
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{n,, s2, i, - >  consists of a steady wave (i = 1) and critical-layer noise ( i  = 2)  and the 
resonance is degenerate. From (4.14) it is seen that the j = 2 wave is defined in 7 2 
and 7 < qz where (see 4.18)) 

Since here ql , ,  < 0 it follows that thej  = 2 wave always exist in the region 7 > 1 where 
the incoming steady wave is defined. Further as 7 --f co the branch i = 1 hasf; - 7-l for 
n, > 0 and can be interpreted as a steady wave, while the branch i = 2 hasf; - - n,  and 
can be interpreted as critical-layer noise. When n, < 0, the branch i = 1 has fi N -n2  
(critical-layer noise) and the branch i = 2 has f i  - -7 (steady wave). Finally (5.3b) 
determines the possible resonance sites. If these lie in 7 > 1, then the above analysis 
shows that the j  = 2 wave produced by this (P, Q) resonance propagates upwards and 
as 7 --f 00 is either a steady wave or critical-layer noise. The scenario is essentially the 
same as the (2,l) or (1,2) resonance analysed in 94. 

For instance, if we put P = 3, Q = 1, then n, = s, = - 2 and the resonantly generated 
wave is a second harmonic (see (4.2a) and note that k ,  = -2K). The resonance site is 
7 = 2+ 4 3 ,  and the resonantly generated wave has i = 2, and hence behaves as a 
steady wave as 7 +. co. This agrees with the analysis of (BS: I-., go on to calculate the 
amplitude of this wave, and interpret it as the second harmonic of the reflected wave, 
whose first harmonic was described in $4. Note that to get a first harmonic for the 
reflected wave, we must choose n, = s, = f 1, so that Q-P = f 1, and indeed the 
analysis of 94 had P = 2, Q = 1, although clearly there are many other possibilities 
involving higher-order interactions. 

Finally, we note that the scenario described above in which the waves generating the 
resonant interaction are the incoming steady wave and critical-layer noise, cannot 
produce a transmitted wave. As shown by (BS), for this to occur we must consider 
resonant interactions between either the incoming steady wave, or the incoming 
critical-layer noise, and one of the resonantly generated waves as described above. Our 
analysis at the end of $4 shows that no transmitted wave can be generated by primary 
or secondary resonances of this kind, but (BS) show that higher-order resonances will 
eventually produce a transmitted wave. 
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